17,075 research outputs found

    Software Engineering Laboratory (SEL). Data base organization and user's guide, revision 1

    Get PDF
    The structure of the Software Engineering Laboratory (SEL) data base is described. It defines each data base file in detail and provides information about how to access and use the data for programmers and other users. Several data base reporting programs are described also

    Recommended approach to sofware development

    Get PDF
    A set of guideline for an organized, disciplined approach to software development, based on data collected and studied for 46 flight dynamics software development projects. Methods and practices for each phase of a software development life cycle that starts with requirements analysis and ends with acceptance testing are described; maintenance and operation is not addressed. For each defined life cycle phase, guidelines for the development process and its management, and the products produced and their reviews are presented

    Diversity-induced resonance in a system of globally coupled linear oscillators

    Get PDF
    The purpose of this paper to analyze in some detail the arguably simplest case of diversity-induced reseonance: that of a system of globally-coupled linear oscillators subjected to a periodic forcing. Diversity appears as the parameters characterizing each oscillator, namely its mass, internal frequency and damping coefficient are drawn from a probability distribution. The main ingredients for the diversity-induced-resonance phenomenon are present in this system as the oscillators display a variability in the individual responses but are induced, by the coupling, to synchronize their responses. A steady state solution for this model is obtained. We also determine the conditions under which it is possible to find a resonance effect.Comment: Reported at the XI International Workshop "Instabilities and Nonequilibrium Structures" Vina del Mar (Chile

    Observation of infinite-range intensity correlations above, at and below the 3D Anderson localization transition

    Full text link
    We investigate long-range intensity correlations on both sides of the Anderson transition of classical waves in a three-dimensional (3D) disordered material. Our ultrasonic experiments are designed to unambiguously detect a recently predicted infinite-range C0 contribution, due to local density of states fluctuations near the source. We find that these C0 correlations, in addition to C2 and C3 contributions, are significantly enhanced near mobility edges. Separate measurements of the inverse participation ratio reveal a link between C0 and the anomalous dimension \Delta_2, implying that C0 may also be used to explore the critical regime of the Anderson transition.Comment: 13 pages, 11 figures (main text plus supplemental information). Updated version includes an improved introductory paragraph, minor text revisions, a revised title and additional supplemental information on the experimental detail

    Locating Overlap Information in Quantum Systems

    Full text link
    When discussing the black hole information problem the term ``information flow'' is frequently used in a rather loose fashion. In this article I attempt to make this notion more concrete. I consider a Hilbert space which is constructed as a tensor product of two subspaces (representing for example inside and outside the black hole). I discuss how the system has the capacity to contain information which is in NEITHER of the subspaces. I attempt to quantify the amount of information located in each of the two subspaces, and elsewhere, and analyze the extent to which unitary evolution can correspond to ``information flow''. I define the notion of ``overlap information'' which appears to be well suited to the problem.Comment: 25 pages plain LaTeX, no figures. Imperial/TP/93-94/2

    Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results

    Full text link
    (Abridged) New full sky temperature and polarization maps based on seven years of data from WMAP are presented. The new results are consistent with previous results, but have improved due to reduced noise from the additional integration time, improved knowledge of the instrument performance, and improved data analysis procedures. The improvements are described in detail. The seven year data set is well fit by a minimal six-parameter flat Lambda-CDM model. The parameters for this model, using the WMAP data in conjunction with baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors on H_0 from Hubble Space Telescope observations, are: Omega_bh^2 = 0.02260 +-0.00053, Omega_ch^2 = 0.1123 +-0.0035, Omega_Lambda = 0.728 +0.015 -0.016, n_s = 0.963 +-0.012, tau = 0.087 +-0.014 and sigma_8 = 0.809 +-0.024 (68 % CL uncertainties). The temperature power spectrum signal-to-noise ratio per multipole is greater that unity for multipoles < 919, allowing a robust measurement of the third acoustic peak. This measurement results in improved constraints on the matter density, Omega_mh^2 = 0.1334 +0.0056 -0.0055, and the epoch of matter- radiation equality, z_eq = 3196 +134 -133, using WMAP data alone. The new WMAP data, when combined with smaller angular scale microwave background anisotropy data, results in a 3 sigma detection of the abundance of primordial Helium, Y_He = 0.326 +-0.075.The power-law index of the primordial power spectrum is now determined to be n_s = 0.963 +-0.012, excluding the Harrison-Zel'dovich-Peebles spectrum by >3 sigma. These new WMAP measurements provide important tests of Big Bang cosmology.Comment: 42 pages, 9 figures, Submitted to Astrophysical Journal Supplement Serie

    Black Hole Motion in Entropic Reformulation of General Relativity

    Full text link
    We consider a system of black holes -- a simplest substitute of a system of point particles in the mechanics of general relativity -- and try to describe their motion with the help of entropic action: a sum of the areas of black hole horizons. We demonstrate that such description is indeed consistent with the Newton's laws of motion and gravity, modulo numerical coefficients, which coincide but seem different from unity. Since a large part of the modern discussion of entropic reformulation of general relativity is actually based on dimensional considerations, for making a next step it is crucially important to modify the argument, so that these dimensionless parameters acquire correct values.Comment: 6 page
    corecore